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Recent years have witnessed a rise in employing deep learning methods, especially convolutional neural

networks (CNNs) for detection of COVID-19 cases using chest CT scans. Most of the state-of-the-art models

demand a huge amount of parameters which often suffer from overfitting in the presence of limited training

samples such as chest CT data and thereby, reducing the detection performance. To handle these issues, in this

paper, a lightweight multi-scale CNN called LiMS-Net is proposed. The LiMS-Net contains two feature

learning blocks where, in each block, filters of different sizes are applied in parallel to derive multi-scale

features from the suspicious regions and an additional filter is subsequently employed to capture discriminant

features. The model has only 2.53M parameters and therefore, requires low computational cost and memory

space when compared to pretrained CNN architectures. Comprehensive experiments are carried out using a

publicly available COVID-19 CT dataset and the results demonstrate that the proposed model achieves higher

performance than many pretrained CNNmodels and state-of-the-art methods even in the presence of limited

CT data. Our model achieves an accuracy of 92.11% and an F1-score of 92.59% for detection of COVID-19

from CT scans. Further, the results on a relatively larger CT dataset indicate the effectiveness of the proposed

model.
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1 INTRODUCTION

The Coronavirus disease 2019 (COVID-19) was declared a pandemic by the World Health Orga-
nization on 11 March 2020 following its rapid spread since its outbreak began in December 2019
[24]. This virus has infected around 152 million people and caused 3.19 million deaths all across
the globe (including US 590k, India 211k, Brazil 404k, France 104k, etc.). Some recent outbreaks of
the variants of COVID-19 virus indicate that it has a highly mutating nature. The major symptoms
of this virus are fever, cough, loss of taste and smell, fatigue and muscle aches. But recently, many
cases were reported where the patients, without even experiencing any of these symptoms, were
tested positive due to this novel virus. A rise in such asymptomatic cases has hampered the accu-
rate and timely diagnosis of this virus. It is still an ongoing pandemic and a leading cause of death
in many countries. Hence, a quick and accurate diagnosis is imperative to control the rapid spread
of this disease. The current standard testing procedure is based on reverse transcription poly-

merase chain reaction (RT-PCR) which takes around 4–6 hours to provide results and hence,
is quite slow and inefficient as compared to the quick spreading of the virus [5, 6]. Besides, the
scarcity of RT-PCR test kits also proves to be a major concern for timely detection of the virus and
curbing its spread. Some key findings in recent studies [5, 15] reveal that computer tomogra-

phy (CT) scans can be strongly considered as an efficient and alternative testing method because
of their capability in showing clear radiological findings of COVID-19 patients at a fast speed
and easy accessibility [3, 12, 33]. Also, CT scans distinctly manifest a blend of multifocal periph-
eral lung changes of ground-glass opacity (GGO) and consolidation which effectively highlight
COVID-19 infections in lungs [30, 33]. However, the medical experts and radiologists require time
in examining and analyzing the CT scans manually and may suffer from fatigue due to the burden
of examining patients at a large scale. Thus, an automated system which can effectively analyze
CT scans and classify them quickly as COVID-19 positive or not is greatly needed to tackle the
current situation.
In recent years, there has been an increased effort on employing deep learning (DL) methods,

mainly convolutional neural networks (CNNs), for predicting COVID-19 infection from chest
radiograph images such as X-rays and CT images [24, 30]. CNNs have proved to be effective in
extracting salient features from chest radiography images. Despite the promising performance of
CNNs in some studies, a major issue to be noted is the large quantity of training data that they
require to effectively extract the prominent features from the CT images. But the lack of publicly
available datasets containing thousands of CT scans makes it harder for the CNN model to learn
the accurate features that are required to correctly classify positive COVID-19 samples from neg-
ative samples. Also, most of the existing CNN models require a large number of parameters and
memory space which often cause overfitting on such a small training data and thereby, reducing
the prediction performance and increasing the inference time while classifying a CT image. There-
fore, such heavier models may not be suitable for real-time diagnosis especially in this scenario
where obtaining rapid results is highly essential.

To address the above issues, in this paper, we present a lightweight multi-scale CNN which
tackles the problem of extracting prominent features even in the presence of limited CT data.
Despite having smaller parameters, low memory space and shallow architecture, the proposed
CNN model outperforms most of the heavy pretrained CNN models. The important contributions
of this paper can be summarized as:

• We propose a lightweight CNN with a multi-scale architecture for COVID-19 detection
which effectively extracts discriminable features from chest CT images even when training
data is limited.
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• Unlike other sequential state-of-the-art CNN models, we introduce two feature learning
blocks in the proposed model which aims to extract multi-scale features from suspicious
regions of CT scans by applying filters of different sizes in parallel and thereafter, fuses
them to achieve higher performance. An additional filter is then applied in each block to
further enhance the feature learning capability.
• To test the efficacy of the LiMS-Net, an extensive set of experiments is carried out using a
publicly available COVID-19 CT dataset1 which carries 349 COVID-19 and 397 non-COVID
samples. Several ablation studies are performed to find the best hyperparameter values for ef-
fective COVID-19 diagnosis. Further, we verify the generalization ability of the model using
a comparatively larger CT dataset.
• We compare the effectiveness of the proposed LiMS-Net with ImageNet pretrained CNN
models in terms of classification performance, computational cost and memory. Also, we
validate the state-of-the-art COVID-19 detection methods using our datasets.

The paper is organized as follows: Section 2 reviews the recent works on DL based COVID-19
diagnosis and Section 3 presents the dataset used. Section 4 describes the proposed LiMS-Net in
detail, while Section 5 presents the experimental results, comparisons and the ablation studies.
Finally, we conclude the paper in Section 6.

2 RELATEDWORK

Soon after the outbreak of COVID-19, an ample amount of studies were performed to automatically
interpret chest radiograph images such as X-rays and CT scans to correctly identify COVID-19 in-
fection [5, 24]. Many studies [16, 18] explained the importance and role of DL methods (mostly
CNNs) in screening and diagnosing COVID-19 patients. Xu et al. [31] developed a DL based early
diagnostic system for distinguishing COVID-19 from pneumonia and normal cases using CT im-
ages which obtained an accuracy of 86.7%. Wang et al. [29] designed a DL algorithm by modifying
Inception V3 model to achieve an accuracy of 79.3%. Zhang et al. [32] proposed a 7-layer CNN
model integrated with stochastic pooling strategy for COVID-19 diagnosis from chest CT scans.
He et al. [9] proposed a self supervised transfer learning DL approach for COVID-19 detection
from CT scans and achieved an accuracy of 86%. Hasan et al. [7] proposed a multi encoder ensem-
ble network named CVR-Net using ResNet50 and Xception as encoders for COVID-19 detection
from CT scans. Saqib et al. [22] implemented various state-of-the-art CNN models like ResNet,
EfficientNet, MNasNet to determine the efficacy of CNN models in detecting COVID-19 from CT
scans. Wang et al. [30] developed a CT scan based deep learning model called CCSHNet to screen
COVID-19 which used two best pretrained CNN models to learn salient features and then fused
these features by a discriminant correlation analysis method. Recently, Kaur et al. [13] proposed
an automatic method using deep features derived from a MobileNetv2 and a parameter free

BAT optimized fuzzy K-nearest neighbor classifier (PF-FKNN) to achieve higher accuracy
for COVID-19 diagnosis.
All these studies either used heavy CNN models (large model size) or pretrained models with

transfer learning which are computationally expensive and need large memory space. Further,
many models were not focused on learning multi-scale features which are essential for effective
COVID-19 diagnosis. Another issue that many studies faced is of validating models using limited
training data which greatly influences the model’s performance. To handle the problems faced
by heavy models, Polsinelli et al. [20] built a lightweight CNN model based on SqueezeNet using
CT images which achieved a classification accuracy of 85.03% for COVID-19 diagnosis. However,

1https://github.com/UCSD-AI4H/COVID-CT.
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Fig. 1. Sample CT scans of COVID-19 and Non-COVID-19 from COVID-19 CT dataset.

Table 1. Description of COVID-19 CT Dataset

Set COVID-19 Non-COVID-19

Train 191 234
Validation 60 58
Test 98 105
Total Images 349 397

the accuracy is not reliable for real-time COVID-19 diagnosis and the model doesn’t effectively
help the medical diagnostic process. Apart from these, several studies were also conducted for
automated COVID-19 diagnosis using chest X-ray images [17, 19]. Thus, a lightweight CNNwhich
could effectively learn prominent features from the limited training data is highly in demand. In
this study, we aim to design a CNNmodel which learns multi-scale features from the limited chest
CT images while retaining the small model size.

3 DATASET

To validate the proposed LiMS-Net model, we consider a large COVID-19 CT dataset1 available
to date which is reported in He et al. [9]. The dataset contains 349 CT images of COVID-19 pos-
itive cases and 397 CT scans of COVID-19 negative cases. The positive COVID-19 samples were
collected from 143 patients, whereas the negative COVID samples were collectively obtained from
various online resources such as PubMed Central (PMC) and MedPix. The images were varied
in height and width from 153 to 1853 and 124 to 1485, respectively and were hence resized to
224× 224. The sample CT images of patients with positive COVID-19 and negative COVID-19 are
shown in Figure 1. This dataset was already available in train, validation, and test sets. Table 1
below summarizes the number of CT images in each set.

3.1 Data Augmentation

Medical imaging datasets face a common problem of small-size dataset due to a shortage of suffi-
cient data samples. A lesser number of training samples often causes ineffective feature extraction
using CNN models, and thus results in poor performance [25]. Although the dataset considered is
comparatively larger in this domain, it is still not adequate to effectively train a CNN model. Aug-
menting the data is an effective way to tackle this problem. Hence, each image in the training set
was augmented with four types of transformations: (a) Gaussian noise (with mean and standard
deviation as 0 and 0.01, respectively), (b) horizontal flipping, (c) anticlockwise rotation (angle 5◦),
and (d) clockwise rotation (angle 5◦).
To explain better, assume |S | to be the cardinality of the a set S of images, i.e., set S contains
|S | images. Since we perform augmentation operations on the original train set T , it contains |T |
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Table 2. Description of Augmented Dataset

Set COVID-19 Non-COVID-19

Train (augmentation) 955 1170
Validation 60 58
Test 98 105
Total Images 1073 1333

images such that
It ∈ T , t = 1, 2, . . . , |T | (1)

Now, we can define the above augmentation operations mathematically as follows:

3.1.1 Gaussian Noise. Gaussian noise was injected over the training images to generate new
noisy images. Let GN be the Gaussian noise function such that

I
дn

T
= GN (It , μ

GN ,σGN ), t = 1, 2, . . . , |T | (2)

where, I
дn

T
represents the set of augmented noisy images, μGN denotes the mean, and σGN denotes

the standard deviation. The value of μGN and σGN were set as 0 and 0.01, respectively.

3.1.2 Horizontal Flip. Each training image It was flipped horizontally to obtain the new image.
Let FLIP denote the flip function which requires a parameter flipcode f c and is defined as follows.

I
f l

T
= FLIP (It , f c ), t = 1, 2, . . . , |T | (3)

where, I
f l

T
represents the set of horizontally flipped images. For horizontal flip, the value of f c = 1

and for vertical flip, f c = 0.

3.1.3 Counterclockwise Rotation. Image rotation is one of the most widely used augmentation
techniques. Each training image It was rotated counterclockwise to obtain the new image. Let
ROTA be the function which requires the angle of rotation θPOS and can be defined as

I raT = ROTA(It ,θ
POS ), t = 1, 2, . . . , |T | (4)

where, I ra
T

represents the set of counterclockwise rotated images. We set the value of θPOS as 5◦.

3.1.4 Clockwise Rotation. Similar to counterclockwise rotation, we also rotated each training
image It clockwise with an angle θNEG = 5◦ to obtain the new image which can be expressed as

I rcT = ROTC (It ,θ
NEG ), t = 1, 2, . . . , |T | (5)

where, I rc
T

represents the set of clockwise rotated images.
After performing the above augmentation operations, every image It produced four new aug-

mented images such that

It ⇒
{
I
дn
t , I

f l
t , I

ra
t , I

rc
t

}
, t = 1, 2, . . . , |T | (6)

Thus, the train set size is increased by 5 times (including the original image). The final dataset
arrangement after augmentation is summarized in Table 2.

4 PROPOSED METHODOLOGY

The objective behind proposing a lightweight multi-scale CNN model was to enable efficient fea-
ture extraction from CT images which results in high performance while preserving the small
model size. In this section, we brief upon the importance of having multi-scale feature learning
and describe the proposed LiMS-Net model.

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 5. Publication date: January 2023.
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4.1 Importance of Multi-Scale Feature Learning

ImageNet pretrained models like VGGNet [26], ResNet [8], and the like, and a majority of the CNN
models proposed in the above mentioned studies have single branched convolution layers con-
nected in a linear fashion, stacked one below the other. Such networks mostly focus on extracting
homogeneously scaled features and fall short in extracting multi-scale features which have been
proved to be effective for complex image classification tasks [14]. Generally, the most vital features
are missed out and these models could not extract exact features which leads to a poor learning
capability and generalization performance. Medical images like CT scans don’t contain significant
features with respect to some specific locations; rather, they can be found in any location over them.
Further, these single branchedmodels when trained on suchmedical datasets have a high chance of
learning unimportant features which affects their diagnosis performance. Some recent works have
proven the effectiveness of having multi-scaled convolutional filters in the CNN architecture [14,
27]. Multi-scaled filters enable the model to extract and learn discriminant features which improve
the performance of the model to a large extent. Hence, we incorporate multi-scaled filters in the
proposed LiMS-Net model which facilitates efficient feature learning and improved performance.

4.2 Importance of Lightweight CNN

Heavy CNN models are generally known for their good classification performance; however, they
are computationally expensive and demand large memory. They also require more computational
resources and take larger inference time. In general, heavy models usually have a larger number of
parameterswhich often face an issue of overfittingwhen trained on small training data likemedical
data. Further, such heavy models may not be feasible as far as real-time deployment is concerned.
Therefore, to handle the above issues, we aim at developing a lightweight CNNmodel which learns
discriminant features from the limited chest CT dataset while retaining the model size.

4.3 Proposed CNN Model

The proposed model is a shallow network which mainly incorporates two multi-scale feature ex-
traction blocks, a convolution (CONV) layer, batch normalization (BN) layers,max-pooling

(MP) layers, and fully connected (FC) layers as shown in Figure 2. The input image is first passed
through a CONV layer followed by a BN and MP layer to initiate the feature learning process and
reduce the feature map size. The model then includes two feature learning blocks which facilitate
multi-scale feature extraction using different scaled convolution filters. These blocks incorporate
a two level architecture. In the first level, two different CONV filters of size 3 × 3 and 5 × 5 are ap-
plied simultaneously to capture distinctive features at different scales from various regions of CT
images. The 3×3 filter helps in extracting the detailed features like patchy shadows, small patches,
and GGO which are found in the CT scans of COVID-19 positive patients, whereas the 5 × 5 filter
helps to learn the coarse features like shape of the lung region. These features are then fused using
concatenation and then a supplementary CONV filter of size 3× 3 is employed in the second level
to further capture the enriched features and thereby, enhancing the feature learning capability.
In the parallel CONV layers, padding is kept the same to ensure the same output dimension

from the parallel streamwhich is required for concatenation. It is worth mentioning here that each
CONV layer in the proposed model is followed by a BN and MP layer. The BN layer is included in
order to improve the training convergence and reduce overfitting [20]. The same block is repeated
once again. The functioning of both the blocks is same and can be expressed mathematically as
follows.
Let B j (I ) be the output of block B j , where j is the block number and I is the input to the block.

Since the block contains two levels, let Bint
j (I ) represents the intermediate output of the first level

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 5. Publication date: January 2023.
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Fig. 2. Overall structure of proposed LiMS-Net model.

which is then passed on to the second level. Let ψ
f ,f ,N
p (I ) represents convolution operation with

N number of kernels of size f × f and padding p, δ represents the BN function, φ represents max-
pooling operation and ⊕ indicates the concatenation operation. Since our model contains only two
blocks, j ∈ [1, 2]. The response of each block can be defined as follows.

Bint
j (I ) =

{
φ
(
δ
(
ψ 3,3,22j+3

p=1 (I )
))
⊕ φ
(
δ
(
ψ 5,5,22j+3

p=2 (I )
))}

(7)

B j (I ) = φ
(
δ
(
ψ 3,3,22j+4

p=1 (Bint
j (I ))
))

(8)

The BN layer used in each block normalizes the inputs of each layer to solve the problem of
internal covariate shift. It calculates the mean μM and variance σ 2

M across the mini batch size and
normalizes the layer inputs using the previously calculated batch statistics. LetM be themini-batch
having sizem such thatM = {I1, I2, . . . , Im }, then the BN ofM is calculated as follows.

μM =
1

m

m∑
i=1

Ii (9)

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 5. Publication date: January 2023.
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σ 2
M =

1

m

m∑
i=1

(Ii − μM )2 (10)

Īi =
Ii − μM√
σ 2
M
+ ϵ

(11)

where, Īi is the normalized input with zero mean and unit variance and ϵ is a small arbitrary
constant added in the denominator for numerical stability. Finally, this normalized input is scaled
and shifted using two learnable parameters γ and β to obtain the output of the BN layer. Thus, the
batch normalization process can be summarized as follows

OBN
i = γ Ii + β (12)

where, OBN
i is the BN output.

The final block is followed by an FC layer of 128 neurons and a dropout layer with a value of 0.5.
Following that, a final classification layer of two neurons is introduced with softmax activation to
classify the CT images as COVID-19 or Non-COVID-19.
Unlike other state-of-the-art CNNmodels, the proposed LiMS-Net model consists of novel multi-

scale feature learning blocks that allows the model to learn the salient features including the
minute and coarse ones, and thereby facilitating effective classification of COVID-19 positive sam-
ples from negative samples. The model is lightweight and hence demands less computational cost
and memory. Further, it can capture prominent discriminable features even when the training data
is limited.

5 EXPERIMENTS AND RESULTS

In this section, we present the implementation details, performance metrics, and experimental
results of the LiMS-Net model. To verify effectiveness of LiMS-Net, the results were compared
with ImageNet based pretrained models as well as the existing methods. Further, an extensive set
of experiments were performed as a part of ablation studies to analyze the effect of each important
factor such as filter size, activation function, weight initialization paradigm, pooling strategy, and
number of blocks.

5.1 Implementation Details and Performance Metrics

The proposed LiMS-Net was validated on a COVID-19 CT image dataset with 349 COVID-19 pos-
itive and 397 COVID-19 negative cases which takes an input resolution of 224 × 224. To reduce
overfitting and provide good generalization, we applied transformations such Gaussian noise, hor-
izontal flip, and both clockwise and anticlockwise rotations as a part of data augmentation. There
are two neurons in the classification and and the loss function considered was categorical cross-
entropy. The model was trained for 50 epochs with Adam optimizer. The mini-batch size and the
learning rate was set to 16 and 0.00001, respectively. The random initialization method was chosen
to initialize the weights. All models were implemented using Keras with Tensorflow as backend.
To further verify the effectiveness of the model, a comparatively larger CT dataset was taken into
consideration.
To evaluate LiMS-Net as well as other existing models, we used several different evaluation

metrics: accuracy (Acc), F1-score (F1), specificity (Spec), sensitivity (Sens), and AUC.

5.2 Evaluation of Proposed Model on COVID-19 CT Dataset

The training curves obtained by our LiMS-Net model are shown in Figure 3. From the graph, it can
be seen that the model is converged well within 50 epochs. The model achieved a training accuracy
of 100%, validation accuracy of 94.07%, and test accuracy of 92.11%. Apart from accuracy, we also

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 5. Publication date: January 2023.
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Fig. 3. Training curves on COVID-19 CT dataset: (a) accuracy vs. epoch, and (b) loss vs. epoch.

Fig. 4. Confusion matrix obtained by LiMS-Net on test set.

Table 3. COVID-19 Classification

Results (in %) of our LiMS-Net on

COVID-19 CT Dataset

Metric Value

Accuracy 92.11
F1-score 92.59
AUC Score 92.00
Specificity 95.23
Sensitivity 88.77
Precision 94.56

evaluated its performance using various metrics as shown in Table 3. Our model achieved an F1
score of 92.59%, AUC score of 92.00%, specificity of 95.23%, sensitivity of 88.77%, and precision of
94.56%. The test set contained 203 images of which 98 were COVID-19 positive samples and the
rest 105 were COVID-19 negative samples. Figure 4 shows the confusion matrix obtained by our
LiMS-Net on the test set. It can be observed that out of 105 samples only 5 were wrongly classified
as COVID-19 positive and only 11 out of 98 images were misclassified as COVID-19 negative.
To verify the stability of the proposed model, it has been repeatedly evaluated for 20 runs, and

the results are plotted in Figure 5. It can be observed that the accuracy does not vary to a large
extent and instead is similar in most runs, indicating the stability of the proposed model.

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 5. Publication date: January 2023.
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Fig. 5. Accuracy obtained by LiMS-Net in different runs.

5.2.1 Comparison with ImageNet Pretrained CNN Models on COVID-19 CT Dataset. To demon-
strate the robustness and efficacy of our LiMS-Net, we investigated the performance of Ima-
geNet pretrained CNN architectures by finetuning them on the considered COVID-19 CT dataset
and compared their results with that of our model. The pretrained models included VGG-16
[26], ResNet-50 [8], ResNet-101 [8], DenseNet-121 [11], DenseNet-169 [11], Inception-V3 [28],
Xception [2], and MobileNet [10]. First the comparison was made on model size in the context
of model parameters and memory space required as listed in Table 4. It can be seen that the Ima-
geNet pretrained models are extremely heavy like VGG-16 with 134.26M, ResNet-101 with 42.66M,
and ResNet-50 with 23.5M parameters as compared to our model which requires just 2.53M param-
eters (about 1.88% of VGG-16, 5.93% of ResNet-101, and 10.77% of ResNet-50). Also, it demands less
parameter compared to themost widely used lightweight model calledMobileNet. Further, it needs
a small amount of memory space and less training time (in sec) as compared to others and thus, is
more suitable for real-time COVID-19 diagnosis using CT images.
Table 5 shows the classification results of the compared ImageNet pretrained models on COVID-

19 CT dataset. It can be also noticed that our model achieved comparable or better performance
than many models. Although DenseNet-169 and ResNet-101 achieved a slightly better classifica-
tion performance, they required comparatively a very large number of model parameters to opti-
mize than our LiMS-Net, i.e., DenseNet-169 required nearly about 5 times more and ResNet-101 re-
quired 17 times more parameters. Despite being extremely lightweight, our LiMS-Net outperforms
many pretrained heavy CNN architectures like ResNet-50, DenseNet-121, Inception-V3, Xception,
and VGG-16 in terms of classification performance which further proved the efficacy of LiMS-Net.
Specifically, compared to DenseNet-121 and Inception-V3 which learns multi-scale features, our
LiMS-Net gets higher performance with less model parameters and memory space. It is worth
mentioning here that the ImageNet models were implemented under similar experimental set up.

5.2.2 Comparison with Existing Methods on COVID-19 CT Dataset. We further compared the
performance of LiMS-Net with the recent existing approaches for automated COVID-19 diagnosis
and the results are tabulated in Table 6. It is evident that our LiMS-Net yielded higher classification
accuracy than state-of-the-art COVID-19 diagnosis methods [7, 9, 13, 17, 20, 22, 29, 32]. It is worth
mentioning here that all the existing methods were validated using the same dataset (COVID-19
CT dataset) and were implemented under similar experimental setting to derive a fair comparison.
It can also be seen that LiMS-Net outperformed other multi-scale based CNNmethods proposed by

ACM Transactions on Management Information Systems, Vol. 14, No. 1, Article 5. Publication date: January 2023.
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Table 4. Comparison with ImageNet CNN Models in Terms of

Model Parameters, Size, and Training Cost

Model Depth Parameter (M) Size (MB) Train time (Sec)

VGG-16 23 134.26 512.27 7.59 × 102

ResNet-101 101 42.66 163.68 7.52 × 102

ResNet-50 50 23.5 90.48 7.3 × 102

Inception-V3 159 21.8 84 7.46 × 102

Xception 126 20.86 79.97 7.41 × 102

DenseNet-169 169 12.64 49.76 7.24 × 102

DenseNet-121 121 7.03 27.94 7.19 × 102

MobileNet 55 3.23 13 6.31 × 102

Our LiMS-Net 7 2.53 9.7 5.13 × 102

Table 5. Comparison of Classification Results (in %) with

ImageNet Pretrained CNN Models on COVID-19 CT Dataset

Model Acc F1 Sens Spec AUC

DenseNet-169 93.10 93.39 91.84 94.29 93.06
ResNet-101 92.61 93.02 89.80 95.24 92.61
ResNet-50 92.11 92.59 88.77 95.23 92.00
DenseNet-121 91.62 92.01 89.80 93.33 91.54
Inception-V3 91.13 91.50 89.80 92.38 91.08
Xception 91.13 91.66 87.76 94.29 91.02
MobileNet 91.13 91.66 87.76 94.29 91.02
VGG-16 90.14 90.82 85.71 94.29 90.00
Our model 92.11 92.59 88.77 95.23 92.00

Wang et al. [29], He et al. [9], and Hasan et al. [7]. The CRNet [9] obtained the least performance
and this is due to the fact that CRNet followed VGG like architecture and did not extract multi-scale
features from the CT images.

5.3 Ablation Studies

To gain deeper insights about the effectiveness of different vital elements on our LiMS-Net, we
performed various ablation studies. The vital elements include the choice of filter size, activation
function, weight initialization scheme, pooling operation, number of blocks, and effect of aug-
mentation. It is worth noting here that all the ablation studies were preformed on COVID-19 CT
dataset.

5.3.1 Choice of Activation Function. In this experiment, we analyzed the impact of activation
function on our LiMS-Net. The performance of LiMS-Net with different activation functions such
as ReLU, leaky ReLU, and Swish [21] are reported in Table 7. Generally, leaky ReLU is an improvised
version of ReLU which solves the dying gradient problem of ReLU and gives better performance.
Swish is also known to achieve better performance than ReLU in many tasks. But surprisingly, for
our LiMS-Net, ReLU activation provided higher classification results as demonstrated in Table 7.

5.3.2 Choice of Weight Initialization. The results obtained so far were using random weight
initialization. After selecting a proper filter size and activation function, we verified the effect
of different weigh initialization schemes such as random, Kaiming and Xavier initialization to
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Table 6. Performance Comparison with Existing Works on

COVID-19 CT Dataset

Reference Method Acc (%) F1 (%)

Wang et al. [29] M-Inception 83.74 83.74
He et al. [9] DenseNet-169 86.00 85.00

with Self-Trans
He et al. [9] CRNet 72.00 76.00
Zhang et al. [32] 7L-CNN 86.69 87.20
Saqib et al. [22] EfficientNet-B4 80.30 81.13
Saqib et al. [22] DenseNet169 87.10 38.46
Nayak et al. [17] ResNet-34 91.13 91.58
Hasan et al. [7] CVR-Net 78.00 78.00
Polsinelli et al. [20] SqueezeNet 86.20 86.91
Kaur et al. [13] MobileNetv2 and PF-FKNN 84.24 83.16
Our model LiMS-Net 92.11 92.59

Table 7. Accuracy of LiMS-Net with

Different Activation Functions

Epochs
Activation function

ReLU Leaky ReLU Swish

25 90.14 87.19 88.17
50 92.11 88.66 89.16

Table 8. Accuracy of LiMS-Net with

Different Weight Initializations

Epochs
Weight initialization

Random Kaiming Xavier

25 90.14 89.16 90.14
50 92.11 90.14 86.69

initialize the weights of LiMS-Net and the results are reported in Table 8. From the table, it can be
seen that the performance of our LiMS-Net was improved with random weight initialization, i.e.,
improved by 1.97% and 5.42% when compared with Kaiming and Xavier initialization, respectively.

5.3.3 Choice of Pooling Strategies. In this experiment, the effect of different pooling operations
was investigated on our model. The two major types of pooling are max pooling and average
pooling. Instead of using a pooling layer, another way of reducing the dimension of feature maps
is by using CONV layer with a stride of 2 in which the filter map moves in steps of 2, thus exactly
reducing the dimension of feature map by half. The performance of each of these operations was
validated with our model and the results are summarized in Table 9. It can be seen that there is no
improvement in the performance after 25 epochs in case of average pooling and CONVwith stride
2. However, max pooling effectively preserved the dominant features and resulted in an improved
classification performance for COVID-19 diagnosis.

5.3.4 Choice of Filter Size. In any CNN architecture, selection of proper CONV filter sizes plays
an important role in extracting relevant features.The 3 × 3 filters were used in two blocks of
our LiMS-Net with an aim to extract local contextual information and hence, were kept fixed
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Table 9. Accuracy of LiMS-Net with

Different Pooling Strategies

Epochs
Downsampling operation

Max Pool Avg Pool CONV with stride 2

25 90.14 89.65 86.69
50 92.11 89.65 86.69

Table 10. Accuracy of LiMS-Net with Different Filter Sizes

Combination of Filters
(3,5) (3,7) (3,9) (5,7) (5,9) (7,9)

Accuracy 92.11 91.13 88.17 90.14 89.65 90.14
Parameters (M) 2.53 2.74 3.02 2.88 3.16 3.36

(x, y ) denotes the combination of filters with size x × x and y × y .

Table 11. Performance of LiMS-Net (in %) with

Different Number of Blocks

Number of Blocks Acc F1 AUC

2 92.11 92.59 92.00
3 85.71 85.99 85.74
4 86.20 87.03 86.08

Table 12. Performance of LiMS-Net (in %) With and

Without Augmented Trained Data

Mode Acc F1 AUC

Without augmentation 71.42 76.03 70.85
With augmentation 92.11 92.59 92.00

throughout the layers. To extract multi-scale features, we employed a 5 × 5 CONV filter along with
a 3 × 3 filter simultaneously. We performed a comprehensive analysis on the combination of filter
sizes to be adopted for achieving the best features, thus resulting in better performance. The results
are shown in Table 10. From the table, it can be seen that the best results were obtained using a com-
bination of 3 × 3 and 5 × 5 filters which effectively capture minute and coarse features. Moreover,
increasing the filter size also increases the parameters whichmight affect the model’s performance.

5.3.5 Choice of Number of Blocks. To further study and verify the architecture of the proposed
LiMS-Net, we performed a study of the effect of the number of blocks on the model’s perfor-
mance as shown in Table 11. It can be seen that the performance was decreased as the number of
blocks increased which can be attributed to learning of irrelevant features in the later blocks of
the model. Thus, two blocks sufficiently extract the prominent features which results in a superior
performance.

5.3.6 Effect of Augmentation. To study and verify the effect of data augmentation, we analyzed
the model’s performance on both original and augmented trained COVID-CT dataset. Table 12
shows the results of our LiMS-Net with data augmentation and without data augmentation. It
can be clearly seen that data augmentation significantly increases the accuracy by 21% due to a
considerable increase (5 times) in the number of training samples.
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Fig. 6. Grad-CAM visualization results of LiMS-Net on both COVID-19 and non-COVID-19 CT images. The

first and third columns provide the original CT images. The second and fourth columns provide their corre-

sponding heatmaps.

5.4 Grad-CAM Visualization of LiMS-Net

The comparison with ImageNet pretrained models and existing DL-based COVID-19 diagnosis
methods demonstrated the efficacy of our LiMS-Net model. But, to get a deeper understanding of
the behaviour of the proposed model, we provide the visual explanation of the model predictions
using Grad-CAM [23]. Grad-CAM helps to crosscheck whether the model is learning relevant fea-
tures from the image instead of learning background or other irrelevant features and predicting the
output based on them. Figure 6 depicts the heatmap results for both COVID-19 and non-COVID-
19 samples using Grad-CAM visualizations. The figure shows that the heatmaps obtained by our
model can cover infected lung regions in most COVID-19 CT scans. While for non-COVID-19
CT scans, there is no indication of infected regions in the heatmaps. These results indicate bet-
ter interpretability of the classification results by our model and hence, can be helpful for clinical
COVID-19 diagnosis.

5.5 Evaluation of Proposed Model on SARS-CoV-2 CT-Scan Dataset

For further verifying the effectiveness of our proposed model, we used a dataset “SARS-CoV-2
CT-Scan” [1] which is comparatively larger than the COVID-CT dataset. The SARS-CoV-2
CT-Scan dataset consists of 1,252 CT scans from 60 COVID-19 positive patients and 1,230 CT
scans obtained from 60 patients non-infected by COVID-19. To ensure a fair comparison, we
adopted the same data split as adopted in [1]. We divided the train set into train and validation sets
using 80:20 ratio, respectively. The number of CT images in each set is summarized in Table 13.
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Table 13. Description of SARS-CoV-2 CT-Scan Dataset

Set COVID-19 Non-COVID-19

Train 802 788
Validation 200 196
Test 250 246
Total Images 1252 1230

Table 14. Classification Performance Comparison (in %) with ImageNet

Pretrained CNN Models on SARS-CoV-2-CT-Scan Dataset

Model Acc F1 AUC Spec Sens

DenseNet-169 98.99 98.99 99.00 100 98.00
ResNet-101 97.78 97.76 97.78 97.97 97.60
ResNet-50 98.79 98.79 98.80 100 97.60
DenseNet-121 98.79 98.78 98.79 99.19 98.40
Inception-V3 97.98 98.00 98.00 100 96.00
Xception 97.78 97.76 97.78 97.97 97.60
MobileNet 98.79 98.78 98.79 97.63 100
VGG-16 98.79 98.78 98.79 99.19 98.40
Our LiMSNet 99.19 99.20 99.08 99.59 98.80

The performance comparison of the proposed model with ImageNet pretrained CNN models on
this is shown in Table 14. It can be observed that the model achieves higher performance than the
ImageNet models in spite of being significantly lighter.

6 CONCLUSION

In this paper, we proposed a lightweight multi-scale CNNmodel termed as LiMS-Net to effectively
detect COVID-19 infection from chest CT scans. The LiMS-Net introduced two feature learning
blocks that contains two layers of convolutions using different filter sizes such as 3×3 and 5×5 to
extract multi-scale features. This two layer lightweight structure helped in learning discriminable
features even in the presence of limited CT images. The LiMS-Net was compared with several
ImageNet pretrained models along with existing DL based COVID-19 detection methods using a
publicly available COVID-19 CT dataset. Experimental results indicated that LiMS-Net achieved
comparable or better classification performance with far fewer model parameters and memory
space which makes it suitable for real-time COVID-19 diagnosis. Our future work is to validate
LiMS-Net using an even more large and diverse dataset. Also, we intend to incorporate attention
mechanisms into our model to enhance the performance by enabling it to focus merely on essential
features of the CT image. Further, in the future, the validation performance of the model could be
estimated in detail using methods such as bootstrap [4].
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