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MFL-Net: An Efficient Lightweight Multi-Scale
Feature Learning CNN for COVID-19 Diagnosis

From CT Images
Amogh Manoj Joshi and Deepak Ranjan Nayak , Member, IEEE

Abstract—Timely and accurate diagnosis of coronavirus
disease 2019 (COVID-19) is crucial in curbing its spread.
Slow testing results of reverse transcription-polymerase
chain reaction (RT-PCR) and a shortage of test kits have led
to consider chest computed tomography (CT) as an alter-
native screening and diagnostic tool. Many deep learning
methods, especially convolutional neural networks (CNNs),
have been developed to detect COVID-19 cases from chest
CT scans. Most of these models demand a vast number of
parameters which often suffer from overfitting in the pres-
ence of limited training data. Moreover, the linearly stacked
single-branched architecture based models hamper the ex-
traction of multi-scale features, reducing the detection per-
formance. In this paper, to handle these issues, we pro-
pose an extremely lightweight CNN with multi-scale feature
learning blocks called as MFL-Net. The MFL-Net comprises
a sequence of MFL blocks that combines multiple convo-
lutional layers with 3 × 3 filters and residual connections
effectively, thereby extracting multi-scale features at dif-
ferent levels and preserving them throughout the block.
The model has only 0.78M parameters and requires low
computational cost and memory space compared to many
ImageNet pretrained CNN architectures. Comprehensive
experiments are carried out using two publicly available
COVID-19 CT imaging datasets. The results demonstrate
that the proposed model achieves higher performance than
pretrained CNN models and state-of-the-art methods on
both datasets with limited training data despite having an
extremely lightweight architecture. The proposed method
proves to be an effective aid for the healthcare system in
the accurate and timely diagnosis of COVID-19.

Index Terms—Chest CT Scan, COVID-19, deep learning,
lightweight CNN, multi-scale feature learning.
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I. INTRODUCTION

IN NOVEMBER 2019, a cluster of pneumonia cases of
unknown etiology were reported in China. Clinical study

of the patients revealed that the reason behind the sudden cases
was a novel disease, later named as coronavirus disease 2019
(COVID-19) which belonged to the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). The outbreak of this
virus soon began and it spread across the globe. On 11 March
2020, the COVID-19 was declared a pandemic by World Health
Organization (WHO) following its rapid spread [1]. This virus
has infected around 517 million people and caused 6.26 million
deaths all across the globe (including US 991 k, Brazil 664 k,
India 524 k, Russia 377 k, etc). The repetitive outbreaks of the
COVID-19 variants in the form of waves indicate its highly
mutating nature. Fever, cough, loss of taste and smell, fatigue
and muscle aches are some of the major symptoms of this virus.
But recently, lot of cases reported where the patients without
even experiencing any of these symptoms were tested positive
for COVID-19. A rise in such asymptomatic cases has put a
heavy strain on the healthcare system worldwide since it is still
an ongoing pandemic and a leading cause of death in many
countries. Moreover, the healthcare system would be damaged
further if exposed suddenly to a new variant of the virus. Hence,
a quick and accurate diagnosis is imperative to control the rapid
spread of this virus.

The current standard testing procedure is based on reverse
transcription-polymerase chain reaction (RT-PCR) which takes
around 4–6 hours to provide results and hence, is quite slow
and inefficient [2], [3]. The shortage of RT-PCR test kits also
proves to be a major concern for timely detection of the virus and
curbing its spread. Hence, clinicians have focused their attention
on computed tomography (CT) scans as an alternative and
efficient testing method because of their capability in showing
clear radiological findings of COVID-19 patients at a fast speed
and easy accessibility [2], [4]. Also, CT scans distinctly manifest
a blend of multifocal peripheral lung changes of ground-glass
opacity (GGO) and consolidation which effectively highlight
COVID-19 infections in lungs, even at an early stage which helps
in timely detection of the virus [5], [6]. However, the medical
experts and radiologists require time in examining and analyzing
the CT scans manually and may suffer from fatigue due to the
burden of examining patients at a large scale. Thus, an automated
system that can accurately analyze CT scans and classify them
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quickly as COVID-19 positive or negative is highly needed to
tackle the current situation and stabilize the healthcare system
in case of further virus outbreaks.

The recent years have witnessed a rise in deep learning (DL)
methods, mainly convolutional neural networks (CNNs) for
medical image analysis tasks [7]. The COVID-19 pandemic has
resulted in numerous studies employing DL methods for predict-
ing COVID-19 infection from chest X-rays and CT scans [1], [6].
CNNs have been proved to be effective in extracting the salient
features from chest radiography images. Despite the promising
performance of CNNs in some studies, a major issue to be noted
is the large quantity of training data that they require to effec-
tively extract the prominent features from the CT images. But,
the availability of only a few publicly available datasets makes it
harder for the CNN model to learn the accurate features that are
required to correctly classify positive COVID-19 samples from
negative samples. Also, most of the existing CNN models de-
mand a large number of parameters and more memory space, re-
quiring a considerable inference time while classifying a CT im-
age [5], [8]. Therefore, such heavier models may not be suitable
for real-time diagnosis especially in this scenario where obtain-
ing rapid results is highly essential. Although, few lightweight
CNN models exist, they do not extract multi-scale features [9],
[10] which appears to be very crucial for CT image classification.
To address the above issues, in this paper, we present an efficient
lightweight CNN with multi-scale feature learning capability
which tackles the problem of extracting prominent features even
in the presence of limited CT data. Despite having smaller
parameters, low memory space and shallow architecture, the
proposed CNN model outperforms most of the heavy pretrained
CNN models and state-of-the-art approaches. The important
contributions of this paper are summarized as follows:

� We propose a very lightweight CNN model (with 0.78 M
parameters) coupled with multi-scale feature learning
blocks for COVID-19 detection from chest CT scans and
term it as MFL-Net.

� The proposed model consists of four multi-scale feature
learning (MFL) blocks wherein each block contains a
blend of convolutional layers (with only 3×3 and 1×1
filters) and residual connections, which effectively learns
feature maps with various size receptive fields (i.e., multi-
scale features) and preserves them throughout the block.

� The efficacy of the MFL-Net is verified through an exten-
sive set of experiments on two publicly available COVID-
19 CT datasets. Also, we perform mix-dataset evaluation
to test the generalization performance of the model. Sev-
eral ablation studies are performed to find the optimal set
of hyperparameters that yield the best results.

� We compare the performance of the proposed MFL-Net
with a set of contemporary pretrained CNN models and
state-of-the-art methods in terms of classification accu-
racy, computational cost, and memory.

II. RELATED WORK

Soon after the outbreak of COVID-19, numerous studies were
performed to investigate and understand the factors that would
help in the diagnosis of COVID-19. Several studies revealed

that chest CT scans manifest clear radiological findings of
COVID-19 [1], [2]. Further, studies in [11] and [12] explained
the importance and role of artificial intelligence (AI) in screening
and diagnosing COVID-19 patients. This further led to a lot of
studies for automated diagnosis of COVID-19 from medical im-
ages like X-rays and CT Scans. Few machine learning based ap-
proaches have developed for COVID-19 diagnosis. For instance,
Gaudencio et al. [13] employed a three-dimensional multiscale
fuzzy entropy (MFE3D) algorithm with different classifiers for
texture-based classification of COVID-19, idiopathic pulmonary
fibrosis (IPF) and healthy CT scans, and achieved an accuracy
of 89%. Tuncer et al. [14] proposed a fuzzy tree transform-based
approach and a multikernel local binary pattern (MKLBP) with
cubic SVM to achieve an accuracy of 97.1%. Such machine
learning-based methods follow multiple conventional steps (fea-
ture extraction, feature selection, and classification) and fall
short in extracting the discriminant features, thus paving a solid
reason for the application of DL in COVID-19 detection. Xu
et al. [15] developed a DL based early-diagnostic system for
distinguishing COVID-19 from pneumonia and normal cases
with an accuracy of 86.7%. Few similar studies [16], [17],
[18], [19], [20] have been made to diagnose COVID from CT
scans. He et al. [5] proposed a self supervised transfer learn-
ing approach for detecting COVID-19 from CT scans which
achieved an accuracy of 86%. Hasan et al. [21] proposed a multi
encoder ensemble network named CVR-Net using ResNet50
and Xception as encoders for COVID-19 detection from CT
scans. Wang et al. [6] developed a CT scan based DL model
called CCSHNet to screen COVID-19 which used two best
pretrained CNN models to learn salient features and then fused
these features by a discriminant correlation analysis method.
Recently, Kaur et al. [8] proposed an automatic method using
deep features derived from a MobileNetv2 and a parameter free
BAT optimized fuzzy K-nearest neighbor classifier (PF-FKNN)
to achieve higher accuracy for COVID-19 diagnosis. Wang
et al. [22] proposed a COVID-Net architecture and implemented
it with a contrastive cross-site learning strategy to tackle the data
heterogenity across different datasets. In a recent study, Ozyurt
et al. [23] proposed a fused dynamic sized exemplars-based pyra-
mid feature generation network (FDEPFGN) and an iterative
hybrid feature selector to extract comprehensive features from
CT scans. JavadiMoghaddam et al. [24] proposed a CNN model
incorporating squeeze excitation (SE) block and Mish activation
function for COVID-19 detection from CT scans, while Madan
et al. [25] employed a triplet network using few-shot learn-
ing to detect COVID-19 with limited CT scans. Besides, DL-
based methods have gained popularity for segmenting lesions in
COVID-19 CT images as it is crucial for accurate diagnosis and
follow-up. Wang et al. [26] proposed a COVID-19 pneumonia le-
sion segmentation network (COPLENet) that deals with lesions
of various scales. Paluru et al. [27] designed a lightweight CNN
(Anam-Net) using anamorphic depth embedding to segment
anomalies in COVID-19 CT scans. Recently, Wu et al. [28]
proposed SRGNet, a sequential region generation network for
joint detection and segmentation of COVID-19 lesions in CT
scans.

Selecting an appropriate feature extractor and classifier in
ML-based approaches has still remained a challenging problem.
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On the other hand, most DL-based studies either used heavy
CNN models (with large model sizes) or pretrained models with
transfer learning which are computationally expensive and need
ample memory space. Further, many of them did not focus on
learning multi-scale features, which are essential for effectively
capturing the minute details of COVID-19 lesions. To handle
these problems, Polsinelli et al. [29] built a lightweight CNN
model which achieved a test accuracy of 83%. However, this
model may not meet the real-time requirements of COVID-19
diagnosis. Thus, a lightweight CNN that could effectively learn
prominent features from the limited training data is highly in
demand. Another issue that many studies face is validating
CNN models using limited training data, which significantly
influences the model’s performance. Hence, in this study, we
aim to design a lightweight CNN model that learns multi-scale
features from the limited chest CT images.

III. DATASET

To perform a comprehensive evaluation of the proposed MFL-
Net, we use two COVID-19 CT datasets: COVID-CT and SARS-
CoV-2 CT-Scan.

A. COVID-CT Dataset

This dataset [5] from UCSD Research Group contains 349
CT scan images of COVID-19 positive cases and 397 CT scans
of COVID-19 negative cases. The positive COVID-19 samples
were collected from 143 patients, whereas the Non-COVID sam-
ples were collectively obtained from PubMed Central (PMC)
and MedPix. The negative cases include CT scans from healthy
subjects as well as patients with other type of lung diseases.
The images varied in height and width from 153 to 1853 and
124 to 1485, respectively, and were hence resized to 224 × 224.
The sample images of two classes from this dataset are shown
in Fig. S1 in the supplementary information (SI). This dataset
was already available in train, validation and test sets. It is worth
noting that the data splitting was done based on the patients to
ensure no information leakage into validation and test set.

B. SARS-CoV-2 CT-Scan Dataset

For further analyzing the effectiveness of our proposed model,
we use another dataset which is comparatively larger than
COVID-CT dataset. The SARS-CoV-2 CT-Scan dataset [30]
contains 1252 CT scans from 60 COVID-19 positive patients
and 1229 CT scans from 60 patients non-infected by COVID-19,
but have other pulmonary diseases. In this dataset, the images
are varied in height and width from 104 to 484 and 153 to 416,
respectively. All the images were therefore resized to 224 ×
224. Few sample CT images of COVID-19 positive and negative
cases are shown in Fig. S2 (SI). Unlike COVID-CT dataset, this
dataset was not available in train-test split sets. However, in
the base paper [30], the authors adopted 80:20 train-test split
ratio without providing any indication of whether data splitting
was done based on subjects or not. Therefore, to ensure a fair
comparison, we adopted the same data split in our experiments.
We further divided the train set into train and validation sets

TABLE I
DESCRIPTION OF COVID-CT AND SARS-COV-2 CT-SCAN DATASETS

in 80:20 ratio, respectively. Table I summarizes the number of
images in each set of the COVID-CT and SARS-CoV-2 CT-Scan
datasets.

C. Data Augmentation

Medical imaging datasets often encounter a small-size dataset
(SSD) problem as data acquisition and medical image annotation
are difficult and costly. Less number of training samples hampers
the feature extraction of CNN models and thus result in low
performance. Augmenting the data is an effective way to tackle
this problem. Therefore, we augment each image in the training
set using four transformations: (a) Gaussian noise (with mean
and standard deviation 0 and 0.01, respectively), (b) horizontal
flip, (c) anticlockwise rotation (angle 5◦), and (d) clockwise
rotation (angle 5◦). The details of these operations and the
dataset arrangement after augmentation can be found in the
supplementary information.

IV. PROPOSED METHODOLOGY

The impetus behind the design of a highly lightweight multi-
scale CNN model was to extract multi-scale features from lim-
ited CT images, resulting in an efficient COVID-19 detection
while preserving the small model size. This section discusses
the proposed MFL-Net model in detail. More explanation on the
importance of lightweight architecture and multi-scale feature
learning can be found in the supplementary information.

A. Proposed MFL-Net

The proposed MFL-Net mainly comprises four multi-scale
feature learning (MFL) blocks in its architecture as shown in
Fig. 1. The architecture of the proposed model and its various
blocks are explained in detail below.

1) Mini Block: The MFL block incorporates several three-
layered mini blocks denoted as βmini which has a sequence of
convolutional (CONV), batch normalization (BN), and ReLU
layer. The CONV layer uses a filter of size 3 × 3 to capture
the detailed features at finer levels from the CT images. In
this, the padding value has been kept “same” for maintaining
a similar feature map size throughout the MFL block. The
BN layer prevents the model from overfitting and boosts the
learning process, thereby improving the training convergence.
The ReLU activation layer is added to introduce non-linearity
in the network’s learning process.

Let βN
mini(I) represent the output of a mini block with N fil-

ters, ϕf,f,N (I) represent convolution operation with N number
of kernels of size f × f , η denote the BN function, and α denote
the ReLU activation function. The functioning of the mini block

Authorized licensed use limited to: ASU Library. Downloaded on March 12,2023 at 22:35:36 UTC from IEEE Xplore.  Restrictions apply. 



5358 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 26, NO. 11, NOVEMBER 2022

Fig. 1. The overall architecture of the proposed MFL-Net. It consists of four MFL blocks; each follows a max-pool layer. The output of the last MFL
block is fed to a global average pooling (GAP) layer and a classification layer to classify each input image as COVID-19 or Non-COVID-19.

Fig. 2. Detailed illustration of the proposed multi-scale feature learning
(MFL) block. It consists of five convolutional layers with 3 × 3 filters
and residual connections to capture features with various sizes receptive
fields (i.e., multi-scale features). The 1 × 1 convolutional layers are used
to reduce the number of channels in the feature maps.

βN
mini can be expressed mathematically as follows

βN
mini(I) = α(η(ϕ3,3,N (I)) (1)

2) MFL Block: The mini blocks are used at several stages
throughout the MFL block. The MFL block is a multi-scale
feature extraction module as shown in Fig. 2 which is repeated
four times throughout the proposed MFL-Net architecture. The
purpose of multi-scale feature extraction is to enable the model to
learn features of different receptive field sizes using a set of filters
and enhance its learning process, improving its generalization
performance on unseen images. The small size filters like 3 ×
3 help in extracting the detailed features like patchy shadows,
small patches, and GGO, which are found in the radiographic
scans of COVID-19 positive patients. In contrast, the large size
filters such as 5×5 and 7×7 help to learn the coarse features like
the shape of the lung region. To learn multi-scale features, i.e.,
features with varying sizes of receptive fields, filters of various
sizes such as 3 × 3, 5 × 5 and 7 × 7 are generally applied
in parallel over the input data followed by the concatenation
of extracted feature maps [9], [10]. However, large size filters
require more number of parameters compared to small size
filters. Specifically, a CONV layer with 5 × 5 kernel size takes
more than double the parameters taken by a CONV layer of
the same number of filters with 3 × 3 kernel size, whereas a
CONV layer with 7 × 7 kernel size takes more than five times
the parameters taken by a CONV layer with 3 × 3 kernel size.
Hence, to maintain a lightweight architecture, we used multiple
CONV layers with 3×3 kernel size in an effective way to capture

the same features of a 5 × 5 and 7 × 7 kernel. In particular, two
CONV layers with 3 × 3 filter size can be used sequentially
to extract features with a receptive field size of 5. The related
equations to compute the size of the receptive field can be found
in the supplementary information.

Similarly, three CONV layers with a kernel size of 3 × 3 can
be used sequentially to extract features with a receptive field
of size 7. Hence, using multiple CONV layers with only 3 ×
3 kernel size reduces the parameters drastically than using a
single CONV layer with 5 × 5 or 7 × 7 kernel size. Inspired by
this, the proposed MFL-Net combines a set of 3 × 3 filters and
residual connections in an effective way to capture features with
a receptive field of size 7 while maintaining minimal parameters.

In the MFL block, the input is first passed through two parallel
streams with a single mini block in one stream and two mini
blocks stacked one after another in the second stream, which
extracts features with receptive field size 5. The features from
both the streams are fused using concatenation which ensures the
features have receptive fields of size 3 and 5 and are passed to a
CONV layer with 1× 1 kernel size, which reduces the number of
channels in the feature maps from n× n× f to n× n× (f/2).
The output of this layer is then fed to another mini-block to
enlarge the size of the receptive fields. In particular, this mini
block extracts features with receptive field size 5 and 7. The
output of this mini block is concatenated again with the input of
the MFL block passed through another mini block via a residual
skip connection to ensure multi-scale feature extraction as it
extracts features with receptive field size 3, 5, and 7. The output
of this concatenation is further passed to a CONV layer with 1
× 1 kernel size for channel reduction in the output feature maps.

Let βN
MFL(I) denote the output of MFL block on input I with

N filters and⊕ denote concatenation operation. The functioning
of MFL block can be mathematically stated as

β′ = βN
mini(β

N
mini(I))⊕ βN

mini(I) (2)

βN
MFL(I) = ϕ1,1,N

(
βN
mini

(
ϕ1,1,N (β′)

)⊕ βN
mini(I)

)
(3)

Thus, the output of the MFL block contains a perfect amalga-
mation of multi-scale features using only 3 × 3 filters while
preserving a lightweight architecture.

3) Overall MFL-Net Architecture: As shown in Fig. 1, the
input image is first passed through a mini block which initiates
the feature learning process and is then fed to a max-pooling
layer with kernel size 2 × 2 to reduce the feature map size.
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TABLE II
MFL-NET ARCHITECTURE SUMMARY

The model then includes four MFL blocks sequentially which
enable efficient multi-scale feature extraction, each followed by
a max-pooling layer for subsequent feature map size reduction.
The output of the last MFL block is passed to a global average
pooling (GAP) layer, which follows a dropout layer with a value
of 0.5. A classification layer of two neurons is introduced at the
end with softmax activation for classifying the CT images as
COVID-19 or Non-COVID-19. In a nutshell, the MFL-Net is a
highly lightweight model with merely 0.78 million parameters
and a multi-scale feature learning architecture, which accounts
for its superior performance in distinguishing COVID-19 posi-
tive samples from the negative ones. Table II shows the network
configuration of the proposed MFL-Net.

V. EXPERIMENTS AND RESULTS

In this section, we present the implementation details, per-
formance evaluation metrics and the experimental results of
the proposed MFL-Net model on both the datasets. To further
evaluate the efficacy of the proposed model, we compare its
results with ImageNet pretrained models along with the existing
methods. Also, we perform ablation studies to analyze the effect
of various influencing factors like activation functions [31],
weight initialization techniques [32], [33], and pooling methods.
The results of ablation studies are presented in Tables S2–S4
(SI).

A. Implementation Details

The proposed MFL-Net was validated on two datasets:
COVID-CT dataset and SARS-CoV-2 CT-Scan dataset. To pre-
vent overfitting and provide good generalization, we augmented
the train set of both datasets using several transformations
such as Gaussian noise, horizontal flip, and both clockwise and
anticlockwise rotations. There were two neurons with softmax
activation in the final classification layer, and the loss function
was chosen as categorical cross-entropy. The mini-batch size
and number of epochs were set to 32 and 70, respectively. A
different initial learning rate was chosen for the two datasets,
decayed by a factor of 0.5 if the validation performance does not
improve within four epochs. Since the COVID-19 CT dataset

Fig. 3. Training curves on both datasets (top: accuracy vs. epoch,
bottom: loss vs. epoch): (a) COVID-CT and (b) SARS-CoV-2 CT-Scan.

TABLE III
CLASSIFICATION RESULTS (IN %) OF PROPOSED MODEL ON COVID-CT

AND SARS-COV-2 CT-SCAN DATASET

has fewer images, a slow initial learning rate of 0.0001 was
chosen, whereas, for the SARS-CoV-2 CT-Scan dataset, a rela-
tively faster learning rate of 0.001 was chosen, which led to an
improvement in detection performance. For experiments on both
datasets, Xavier weight initializer was used. All experiments
were implemented using Keras framework with Tensorflow as
backend. It is worth noting that intensity normalization has been
applied over all images as a preprocessing step to preserve the
numerical stability in the network.

To evaluate the proposed MFL-Net as well as other existing
models, we used different evaluation metrics such as accuracy
(Acc), F1-score, specificity (Spec), sensitivity (Sen), precision
(Prec), and area-under-the-curve (AUC).

B. Evaluation of Proposed Model

Since both datasets contained samples of different patients,
the proposed model was trained and tested on these datasets
separately to better understand its effectiveness and learning
capability. The results on both datasets are explained in detail
below.

The training curves obtained by our MFL-Net on both datasets
are shown in Fig. 3. It can be seen that the model is converged
well within 70 epochs. The model achieved an accuracy of
93.59% and 98.79% on COVID-CT and SARS-CoV-2 CT-Scan
dataset, respectively. Table III lists the detailed classification
results on both the datasets. Fig. 4 shows the confusion matrices
obtained by our MFL-Net on the test set of both datasets. It can
be observed that on COVID-CT dataset, only two samples were
wrongly classified as COVID-19 positive among 105 COVID-19
negative samples, and 11 among 98 COVID-19 positive samples
were misclassified as COVID-19 negative. While on SARS-
CoV-2 CT-Scan dataset, only three samples were wrongly classi-
fied as COVID-19 negative and positive. The better performance
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Fig. 4. Confusion matrix obtained by MFL-Net on (a) COVID-CT and
(b) SARS-CoV-2 CT-Scan dataset.

TABLE IV
RESULTS OF MIX-DATASET ANALYSIS

on this dataset can be majorly attributed to the larger number of
training samples. It is worth noting here that we achieved the
best results with the swish activation function instead of ReLU
in the MFL block on SARS-CoV-2 CT-Scan dataset.

1) Mixed-Dataset Evaluation: Along with intra-dataset ex-
periments, we also performed a comprehensive mix-dataset
evaluation by combining the images of both datasets used. In
this experiment, we built the train, validation, and test sets by
selecting images from both datasets in the same split ratio. The
objective of this experiment was to allow the model to learn from
samples of both datasets, increasing diversity in training data.
This situation is closer to a real-time scenario. We also evaluated
the performance of several ImageNet pretrained models under
the same experimental settings. Table IV shows a performance
comparison of MFL-Net with ImageNet models. It can be
seen that our MFL-Net outperformed the ImageNet models
with an accuracy of 96.13%, indicating its good generalization
capability. It is worth noting that the same four augmentation
techniques discussed earlier in this paper have been adopted in
this experiment.

C. Comparison With GAN-Based Augmentation

Generative adversarial networks (GANs) have recently been
used for augmenting data in a wide range of medical image anal-
ysis tasks where training data is limited [34], [35]. Along with
classic data augmentation (CDA) as discussed in Section V-A,
we employed a deep convolutional GAN (DCGAN) for gener-
ating synthetic CT images, which can be used for data augmen-
tation. The architecture of DCGAN consists of a generator and
a discriminator model, which was inspired from [35]; however,
it has a few additional upsampling and downsampling layers.
Finally, we trained the MFL-Net using the train set combined
with GAN-generated images and compared the performance

TABLE V
PERFORMANCE COMPARISON WITH GAN-BASED AUGMENTATION

TABLE VI
COMPARISON OF MODEL PARAMETERS AND SIZES

with CDA as shown in Table V. It can be noticed that both the
augmentation approaches achieved comparable results, but CDA
achieved a slightly higher accuracy on both datasets. However, in
the future, we aim to explore the advanced GAN architectures for
improved classification results. It is noteworthy that the number
of augmented images in both approaches was kept similar for
fair comparisons.

D. Comparison With Imagenet Pretrained Models

To demonstrate the efficacy of our MFL-Net, we also in-
vestigated the performance of ImageNet pretrained CNN ar-
chitectures by fine-tuning them on separate CT scan datasets
used in our experiments and compared their results with that
of our model. The pretrained models include VGG-16 [36],
ResNet-50 [37], DenseNet-121 [38], MobileNet V2 [39], Effi-
cientNet B0 [40], Inception V3 [41], and Xception [42]. Initially,
a comparison was made on model size, specifically in the context
of model parameters in millions and memory space required in
megabytes (MB) as listed in Table VI.

It can be seen that most ImageNet pretrained models are
extremely heavy like VGG-16 with 134.26 M, ResNet-50 with
23.5 M parameters, Inception V3 with 21.77 M parameters
and DenseNet-121 with 6.95 M parameters as compared to our
proposed model which requires only 0.78 M parameters (about
0.58% of VGG-16, 3.31% of ResNet-50, 3.58% of Inception V3
and 11.22% of DenseNet-121). It also occupies a less memory
space as compared to others and thus, is more suitable for real-
time COVID-19 diagnosis using CT images. Tables VII and VIII
show the classification results of the ImageNet pretrained CNN
architectures and our proposed model on COVID-CT and SARS-
CoV-2 CT-Scan datasets, respectively. It can be observed that our
model outperformed all the ImageNet models on COVID-CT
dataset and achieved comparable or better performance than
most models on SARS-CoV-2 CT-Scan dataset.

On COVID-CT dataset, MFL-Net achieved superior per-
formance than all the ImageNet models despite its lighter
architecture; whereas, on the SARS-CoV-2 CT-Scan dataset,
our MFL-Net outperformed MobileNet V2 and Inception-V3,
and achieved similar accuracy as of VGG-16 and ResNet-50.
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TABLE VII
PERFORMANCE COMPARISON WITH IMAGENET PRETRAINED CNN MODELS

ON COVID-CT DATASET

TABLE VIII
PERFORMANCE COMPARISON WITH IMAGENET PRETRAINED CNN MODELS

ON SARS-COV-2-CT-SCAN DATASET

While Xception is 27 times heavier, it achieved accuracy greater
than MFL-Net by only 0.4%. Further, DenseNet-121 (9 times
heavier) and EfficientNet B0 (5.2 times heavier) achieved com-
parable accuracy with our model, which further proved the effi-
cacy of the proposed MFL-Net despite having a very lightweight
architecture. To summarize, compared to DenseNet-121 and
Inception V3 which learn multi-scale features, our MFL-Net
achieved better performance, indicating a better feature learning
capability in the presence of limited training data. Further, our
model outperformed lightweight models such as MobileNet V2
and EfficientNet B0. It is worth mentioning that all the ImageNet
models were implemented under a similar experimental setup for
both datasets.

E. Comparison With Existing Methods

Apart from evaluating the performance of the proposed
model, we further compared the results of our model with the
state-of-the-art COVID-19 diagnosis methods on both datasets
separately. A comparison with the existing works that used
COVID-CT dataset [5], [8], [16], [18], [21], [29], [43], [44]
has been made in Table IX. It can be seen that our MFL-Net
outperforms all the existing approaches in terms of classification
accuracy and F1-score. It is worth noting that all the existing
methods were implemented under a similar experimental setting
to derive a fair comparison. It can also be observed that MFL-Net
outperforms other multi-scale based CNN methods proposed
by Wang et al. [6], He et al. [5], and Hasan et al. [21]. The
CRNet [5] obtained the least performance, and this is due to the
fact that CRNet followed VGG like linearly stacked architecture
and did not extract multi-scale features from the CT images.
Also, despite having the lightest architecture among all these
state-of-the-art works, our model achieved the best results on
this dataset.

TABLE IX
PERFORMANCE COMPARISON WITH EXISTING WORKS ON

COVID-CT DATASET

TABLE X
PERFORMANCE COMPARISON WITH EXISTING WORKS ON SARS-COV-2

CT-SCAN DATASET

Similarly, a comparison with the existing works [8], [22], [45],
[46], [47], [48] validated on SARS-CoV-2 CT-Scan dataset [30]
has been made in Table X. It can be seen that the proposed
model outperforms almost all the existing works. It is worth
highlighting that our lightweight approach achieved higher
performance than the works which used multiple models and
ensemble approaches [46], [47]. Kaur et al. [8] used MobileNet
V2 along with FKNN model which is approximately 4.35 times
heavier than our model; however, it achieved a slightly higher
accuracy. The superior performance of our proposed model on
both datasets can be majorly attributed to its multi-scale feature
learning capability coupled with its highly lightweight network,
thus proving its robustness and efficacy.

F. Grad-CAM Visualization of MFL-Net

The comparison with ImageNet pretrained models and state-
of-the-art DL-based approaches demonstrated the effectiveness
of our MFL-Net model. However, to get a deeper understanding
of the behavior of the proposed model and to understand the fea-
tures on which the model is focusing, we used Grad-CAM [49]
visualizations which provide a visual interpretation of the model
predictions. Grad-CAM also helps cross-check whether the
model learns the appropriate features from the image instead
of the background. Fig. 5 depicts the heatmap results for both
COVID-19 and Non-COVID-19 samples of both the datasets
using Grad-CAM visualizations. From these heatmaps, it can
be seen that in COVID-19 CT scans, our model can accurately
locate the infected lung regions, whereas, for Non-COVID-19
CT scans, there is no indication of infected areas. This exhibits
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Fig. 5. GradCAM visualization results of MFL-Net on sample images
of two classes: COVID-19 and Non-COVID-19 for both datasets: (a)
COVID-CT dataset and (b) SARS-CoV-2 CT-Scan dataset.

better interpretability of the classification results by our model
and supports the superior classification performance.

G. Limitations

The current study has some limitations. Although our method
performs better in the presence of limited data, the size of the
datasets considered is reasonably small, with data collected from
only a few COVID-19 patients, and the datasets do not contain
more diverse CT image data. Furthermore, the datasets do not
include patients with different stages of COVID-19 infection
and patients with asymptotic cases. The studies in [50] and [51]
have shown the radiological findings in CT scans at different
stages of COVID-19 infection. However, there is no such CT
image dataset containing different severity levels yet available
publicly to verify the effectiveness of the model. Further, it has
been observed that there are abnormal findings in CT images
of asymptotic COVID-19 cases [52], [53] and how well the
proposed model can perform on such data needs further inves-
tigation. In future work, we will verify the effectiveness of the
proposed model using a large and diverse COVID-19 CT dataset
with data from patients at different severity levels. Also, we will
try to evaluate the model on CT images of asymptotic cases.

VI. CONCLUSION

This paper proposed an extremely lightweight CNN model
termed as MFL-Net with multi-scale feature learning capability
to detect COVID-19 infection from chest CT scans accurately.
The MFL-Net includes a set of MFL blocks that effectively
combine multiple convolutional layers and residual connections

to extract multi-scale features. This has resulted in a highly
lightweight architecture with only 0.78 M parameters. Extensive
experiments on two COVID-19 CT datasets indicated that MFL-
Net achieved superior classification performance with fewer
model parameters and memory space, making it suitable for
real-time COVID-19 diagnosis. In future, the efficacy of the
proposed model can be tested on a variety of image classification
tasks. Also, we intend to design more effective feature enhance-
ment modules to enhance the COVID-19 detection performance
further.
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